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ABSTRACT 

Kemer has shown that the standard identity s. implies some Capelli identity din. 
We prove that m is bounded above by a subexponential function of n. 

In [1] Kemer shows that every (associative, characteristic zero) algebra which 

satisfies a standard identity s, must also satisfy some Capelli identity d, .  Let 

k(n) = the least integer such that dktn)is a consequence of s,. 

The function k(n) is not discussed explicitly in [1], although it is not difficult to 

show from the proof of Theorem 1 that, for n even, 

/1 2 

In this paper we show that k(n)  is a subexponential function: if rn = the least 

integer _>- log2(3n - 1), then 

k(n)  <-< _ +1 . 

Our proof involves only a small modification of Kemer's.  

Since m x m matrices satisfy s2,, but not d,,2, k ( 2 m ) =  > m 2 + l .  We do not 

know whether k(n) is bounded above by any polynomial. 

We keep the notation of [1]: 

NOTATION. (a) S, = E,~s. ( -  1)~x,t ' ' '  x,~,. I, = the T-ideal generated by s,. 
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(b) dm (x, . . . . .  xm, y ,  . . . . .  ym-1) = E~sm ( -  lyx~ly,x~2y2" " • y,,-lx~,,. V,, = the 

T-ideal generated by dm together with all polynomials gotten from dm by 

formally setting some subset of the y 's  equal to 1. 

(c) G = the F-algebra generated by y~, y2 . . . . .  e,, e2, . . ,  with relations y~uyj + 

yjuy~ = 0 for all u. 

(d) Wm = t h e  set of words of length m in el, e2 . . . . .  If wl . . . . .  w, E 

Win, g l , . . . ,  gn-~ E G and or E S~, then 

w~g~w~2g2. • • g,_~w~. = e w l g l w 2 g 2 "  • • g, lWn-1, 

where e = l i f  m is even and e = ( - 1 )  ~ if m is odd. 

(e) Tm= the ideal of G generated by Win. 

(f) If A is a T-ideal, then A (G)  is the set of evaluations of A on G. Note that 

W,, and hence Tm is contained in /~(G) .  

We also recall 

LEMMA (Kemer). Let A be a T-ideal. Then A contains I'm if and only if 

T~'C_A(G). 

Following Kemer  we take n = 2r to be even. Now the proof of his theorem 1 

can be modfied to yield: 

LEMMA. Let h,(Xl . . . .  ,x , )  be the polynomial E ~ s x ~ . . . x ~ , ,  and let 

x l , . . . ,  x~+l E W,,G. 

(1) I f  m is odd, then 

h , (x , , . . .  ,X,)Xr÷, E T2m + I~(G). 

(2) If  m is even, then 

h,(x, . . . .  , Xr)Xr+l ~ T2ra-1 q- In(G). 

PROOF. (1) Let  xi = wig~, w~ E W,,, i = 1 , . . . ,  r + 1, and calculate 

h,(x , , . . . ,x , )x ,+,  = ~, w , , g . , . . ,  w~,g.,w,+,g,+, 
tr~S, 

= ~ ( -  1)~w,g¢, ' ' "  w.go.w.+,g.÷, 
~ E $  r 

= ~ ( -  1 )~( -  lf'W.lg~," • • Wrrgo-rWr+lgr+l 
~,TES r 

1 
"~-- "~. Set ( W l ,  g l ,  ° " . ,  Wr, gr)Wr+lgr+l -[- an element of T2m. 
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(2) Let x~ = w@, where w~ E Wm t, g~ E Tt G, i = 1 . . . . .  r + 1 and proceed as 

in (1). 

REMARK. If n = 2r + 1 is odd the lemma is still true: one need only consider 

s,(wl, gl . . . . .  w,, g,, w,+,)g,+~ instead of s,(w~, g, . . . . .  w,, g,)w,+~g,+~. 

COROLLARY. If m is even, then T~ +' C T2,, + I , (G)  and if m is odd then 
T~+I (~_ T2m-,+I.(G). 

PROOF. By Razmyslov's version of the Nagata-Higman theorem [2], if an 

algebra satisfies hr(x~,. . . ,  x,) then it must be nilpotent of index r 2. So 

x~. • • xr2 = linear combination of terms of the form u~hr(u2 . . . .  , u,+~)ur+~, 

where the u's are (possibly empty) words in the x's. Multiplying both sides on 

the right by x~-~+~ shows that if an algebra satisfies h,(x~ . . . .  , x,)x,+~ then it is 

nilpotent of index rZ+ 1. 

Applying this to the previous lemma yields that (WING) ~'~+~ is contained in the 

appropriate ideal, and so Tm also is. 

In light of this corollary we define 

DEFINITION. Let f be the integer function given by f (1 )=  1 and 

2f(m) if m is odd, 

f (m  + 1) [ 2 f ( m ) -  1 if m is even. 

It is easy to show by induction that T~'"+~m_C Tr~,.~+/,(G). Since T. C_/,, if 

f(m)>= n then T]'~÷t)~C I , (G)  or 

PROPOSITION. If  f(m)>=n and k = ( r 2 + l )  ", then T~CI , ,  i.e., s, implies 

d(,2+l)-. 

To calculate f ( m )  we first remark that 

4 f ( m ) - 2  if m is even, 

f(m + 2 ) =  [ 
4 f ( m ) - 1  if m is odd. 

It is now a straightforward calculation using the theory of linear recursion that 

½(2" +2) m even, 

f ( m )  
½(2" + 1) m odd. 
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THEOREM. Let m be an integer such that m >= logff2n - 1) and k = (r 2 + 1) m. 

Then s. implies the Capelli identity dk. 

REMARK, It is not known whether sn implies d., in arbitrary characteristic. 

Our proof will hold in a slightly weaker form in characteristic - n ! .  The 

Nagata-Higman theorem is known for characteristic _-> n!, but it is not clear 

whether Razmyslov's bound of n 2 will still hold in this case. 
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