ON A THEOREM OF KEMER

ΒY

ALLAN BERELE' Department of Mathematics, C-012, University of California, San Diego, La Jolla, CA 92093, USA

ABSTRACT

Kemer has shown that the standard identity s_n implies some Capelli identity d_m . We prove that m is bounded above by a subexponential function of n.

In [1] Kemer shows that every (associative, characteristic zero) algebra which satisfies a standard identity s_n must also satisfy some Capelli identity d_m . Let

k(n) = the least integer such that $d_{k(n)}$ is a consequence of s_n .

The function k(n) is not discussed explicitly in [1], although it is not difficult to show from the proof of Theorem 1 that, for n even,

$$k(n) \leq \left(\left(\frac{n}{2}\right)^2 + 1 \right)^n.$$

In this paper we show that k(n) is a subexponential function: if m = the least integer $\ge \log_2(3n - 1)$, then

$$k(n) \leq \left(\left[\frac{n}{2} \right]^2 + 1 \right)^m.$$

Our proof involves only a small modification of Kemer's.

Since $m \times m$ matrices satisfy s_{2m} but not d_{m^2} , $k(2m) \ge m^2 + 1$. We do not know whether k(n) is bounded above by any polynomial.

We keep the notation of [1]:

NOTATION. (a) $S_n = \sum_{\sigma \in S_n} (-1)^{\sigma} x_{\sigma 1} \cdots x_{\sigma n}$. I_n = the *T*-ideal generated by s_n .

Received March 13, 1984 and in revised form December 17, 1984

[†] Current address. Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA

(b) $d_m(x_1, \ldots, x_m; y_1, \ldots, y_{m-1}) = \sum_{\sigma \in S_m} (-1)^{\sigma} x_{\sigma 1} y_1 x_{\sigma 2} y_2 \cdots y_{m-1} x_{\sigma m}$. V_m = the *T*-ideal generated by d_m together with all polynomials gotten from d_m by formally setting some subset of the y's equal to 1.

(c) $G = \text{the } F\text{-algebra generated by } y_1, y_2, \dots, e_1, e_2, \dots$ with relations $y_i u y_j + y_j u y_i = 0$ for all u.

(d) W_m = the set of words of length m in e_1, e_2, \ldots . If $w_1, \ldots, w_n \in W_m, g_1, \ldots, g_{n-1} \in G$ and $\sigma \in S_n$, then

$$w_{\sigma 1}g_1w_{\sigma 2}g_2\cdots g_{n-1}w_{\sigma n}=\varepsilon w_1g_1w_2g_2\cdots g_{n-1}w_{n-1},$$

where $\varepsilon = 1$ if *m* is even and $\varepsilon = (-1)^{\sigma}$ if *m* is odd.

(e) T_m = the ideal of G generated by W_m .

(f) If A is a T-ideal, then A(G) is the set of evaluations of A on G. Note that W_m and hence T_m is contained in $I_m(G)$.

We also recall

LEMMA (Kemer). Let A be a T-ideal. Then A contains V_m if and only if $T_1^m \subseteq A(G)$.

Following Kemer we take n = 2r to be even. Now the proof of his theorem 1 can be modified to yield:

LEMMA. Let $h_r(x_1, \ldots, x_r)$ be the polynomial $\sum_{\sigma \in S_r} x_{\sigma 1} \cdots x_{\sigma r}$, and let $x_1, \ldots, x_{r+1} \in W_m G$.

(1) If m is odd, then

$$h_r(x_1,\ldots,x_r)x_{r+1} \in T_{2m} + I_n(G).$$

(2) If m is even, then

$$h_r(x_1,\ldots,x_r)x_{r+1} \in T_{2m-1} + I_n(G).$$

PROOF. (1) Let $x_i = w_i g_i$, $w_i \in W_m$, i = 1, ..., r+1, and calculate

$$h_{r}(x_{1},...,x_{r})x_{r+1} = \sum_{\sigma \in S_{r}} w_{\sigma 1}g_{\sigma 1}\cdots w_{\sigma r}g_{\sigma r}w_{r+1}g_{r+1}$$

$$= \sum_{\sigma \in S_{r}} (-1)^{\sigma}w_{1}g_{\sigma 1}\cdots w_{r}g_{\sigma r}w_{r+1}g_{r+1}$$

$$= \sum_{\sigma,\tau \in S_{r}} (-1)^{\sigma} (-1)^{\tau}w_{\tau 1}g_{\sigma 1}\cdots w_{\tau r}g_{\sigma r}w_{r+1}g_{r+1}$$

$$= \frac{1}{r!}s_{n}(w_{1},g_{1},...,w_{r},g_{r})w_{r+1}g_{r+1} + \text{an element of } T_{2m}$$

(2) Let $x_i = w_i g_i$, where $w_i \in W_{m-1}$, $g_i \in T_1 G$, $i = 1, \ldots, r+1$ and proceed as in (1).

REMARK. If n = 2r + 1 is odd the lemma is still true: one need only consider $s_n(w_1, g_1, \ldots, w_r, g_r, w_{r+1})g_{r+1}$ instead of $s_n(w_1, g_1, \ldots, w_r, g_r)w_{r+1}g_{r+1}$.

COROLLARY. If m is even, then $T'_m^{2+1} \subseteq T_{2m} + I_n(G)$ and if m is odd then $T'_m^{2+1} \subseteq T_{2m-1} + I_n(G)$.

PROOF. By Razmyslov's version of the Nagata-Higman theorem [2], if an algebra satisfies $h_r(x_1, \ldots, x_r)$ then it must be nilpotent of index r^2 . So

 $x_1 \cdots x_{r^2}$ = linear combination of terms of the form $u_1 h_r (u_2, \ldots, u_{r+1}) u_{r+2}$,

where the u's are (possibly empty) words in the x's. Multiplying both sides on the right by $x_{r^{2}+1}$ shows that if an algebra satisfies $h_r(x_1, \ldots, x_r)x_{r+1}$ then it is nilpotent of index $r^2 + 1$.

Applying this to the previous lemma yields that $(W_m G)^{r^{2+1}}$ is contained in the appropriate ideal, and so T_m also is.

In light of this corollary we define

DEFINITION. Let f be the integer function given by f(1) = 1 and

$$f(m+1) = \begin{cases} 2f(m) & \text{if } m \text{ is odd,} \\ \\ 2f(m)-1 & \text{if } m \text{ is even.} \end{cases}$$

It is easy to show by induction that $T_1^{(r^{2+1})^m} \subseteq T_{f(m)} + I_n(G)$. Since $T_n \subseteq I_n$, if $f(m) \ge n$ then $T_1^{(r^{2+1})^m} \subseteq I_n(G)$ or

PROPOSITION. If $f(m) \ge n$ and $k = (r^2 + 1)^m$, then $T_1^k \subseteq I_n$, i.e., s_n implies $d_{(r^2+1)^m}$.

To calculate f(m) we first remark that

$$f(m+2) = \begin{cases} 4f(m)-2 & \text{if } m \text{ is even,} \\ 4f(m)-1 & \text{if } m \text{ is odd.} \end{cases}$$

It is now a straightforward calculation using the theory of linear recursion that

$$f(m) = \begin{cases} \frac{1}{3}(2^m + 2) & m \text{ even,} \\ \\ \frac{1}{3}(2^m + 1) & m \text{ odd.} \end{cases}$$

A. BERELE

THEOREM. Let m be an integer such that $m \ge \log_2(2n-1)$ and $k = (r^2 + 1)^m$. Then s_n implies the Capelli identity d_k .

REMARK. It is not known whether s_n implies d_m in arbitrary characteristic. Our proof will hold in a slightly weaker form in characteristic $\ge n!$. The Nagata-Higman theorem is known for characteristic $\ge n!$, but it is not clear whether Razmyslov's bound of n^2 will still hold in this case.

ACKNOWLEDGEMENTS

Thanks to A. Braun and C. Dean for useful conversations.

References

1. A. R. Kemer, Remark on the standard identity, Mat. Zametki 23(5) (1978), 753-757 (Math. Notes 23(5) (1978)).

2. Ju. P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero, Izv. Akad. Nauk, SSR Ser. Mat. 38 (1974), 723–756 (Math. USSR Izv. 8 (1974)).